[ad_1]
TASK 1 Write Matlab functions to do the followings:
1. Accept user input image. Allow user to select the image.
2. Perform filtering functions on the input image. 
Example: 
Select an image: Lena.png 
Convert to grayscale 
Add noise:
 Noise 1: Gaussian noise 
 Noise 2: Salt & Pepper 
Perform filtering on image with each noise:
a) Weighted Average filter
b) Median filter 
c) Laplacian filter 
d) Ideal lowpass filter 
e) Butterworth highpass filter
3. Display: Input image, image with noise, filtered image
TASK 2 Write a Matlab function to perform image segmentation using: 
a) Global thresholding 
b) Iterative thresholding 
Load the image into memory. Convert to grey image. Then perform image segmentation.
Example: 
Select an image: Lena.png (use your own image)
Perform segmentation: 
Display: Input image, Binary images (output images)
NOTES: Filtering in frequency domain: 
i. The command fft2, fftshift, ifft2, ifftshift A = imread(Lenna.tiff); 
B = rgb2gray(A); C = fftshift(fft2(B)); figure, imshow(log(abs(C)), colormap(jet(64))), 
colorbar
[ad_2]
Source link