[ad_1]

This is the first week of a two-week lab studying cell motion. This week we will learn how to use
Excel to analyze the 1-D motion of an amoeba from stop-motion images. Next week we will be
analyzing videos of cell motion: 1) wound closure, 2) neutrophil motion, and 3) bacteria
motion—to determine whether or not a patient should be prescribed antibiotics. Clearly, the
relative speeds of the wound closure, neutrophils, and bacteria will affect your decision. Thus it
becomes important that we learn how to quantify the motion of cells.
On the next page, you will see a graph of the movement of Dictyostelium discoideum, shown as a
sequence of outlines of the amoeba cell at 3.0-minute intervals. Your task is to record and analyze
the motion of the amoeba—specifically, the position, instantaneous and average speed, and
instantaneous and average acceleration. Rather than do all of the mathematical calculations by
hand, Excel can help you do the calculations much more quickly and efficiently. This week you
will practice and master the skills necessary to bend Excel to your will and make it do the grunt
work. Next week, you will be expected to be experts at these skills so take turns and help each
other learn.
Deliverables:
Either individually or with a partner, you will submit a set of graphs (y vs. t, v vs. t) with your
data tables and the typed responses to these questions:
1) What do these graphs say about the motion of this organism?
2) Look at the top speed for the organism. If the organism were moving at the top speed for an
entire day (24 hours) how far would it travel. Compare this to the length of the human
body.
3) What did you learn from this first online lab? What do you think the instructors are hoping
you start to learn and practice from this?
You will upload the graphs, tables, and typed responses in one PDF to the assignment page in
canvas. It is incredibly hard to grade if there are several pages of uploads.
_________________________________________________________________________________________________________________Ad
apted from K. Moore, J. Giannini, B. Geller & W. Losert (Univ. of Maryland, College Park)
1
2
Table 1: Your position vs. time graph – Using the figure above, find the position for the amoeba
for each time given in the graph. Remember, each snapshot of the amoeba is taken in three second
intervals (hence the intervals given in the graph). For consistency it is best to pick the same part of
the amoeba every time (say the top point). When you are done create a graph of your position vs.
time. Usually we use a scatter plot for data like this but this time we will use a line graph. Be
careful to show units! You may use either google spreadsheet or excel. There is an excel review on
the next page.
t y
0
3
6
9
12
15
18
21
24
27
30
3
Table 2: Your velocity vs. time graph – Remember, your velocity is Δy/Δt , so if you can
calculate the average velocity ( y2

Sample Solution

The post The neutrophil motion appeared first on acestar tutors.

[ad_2]

Source link